Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers

نویسندگان

  • Michael Hollerer
  • Daniel Lüftner
  • Philipp Hurdax
  • Thomas Ules
  • Serguei Soubatch
  • Frank Stefan Tautz
  • Georg Koller
  • Peter Puschnig
  • Martin Sterrer
  • Michael G Ramsey
چکیده

It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy level alignment at organic heterojunctions: Role of the charge neutrality level

We present a mechanism that explains the energy-level alignment at organic-organic sOOd semiconductor heterojunctions. Following our work on metal/organic interfaces, we extend the concepts of charge neutrality level sCNLd and induced density of interface states to OO interfaces, and propose that the energy-level alignment is driven by the alignment of the CNLs of the two organic semiconductors...

متن کامل

Numerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection

The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...

متن کامل

Energy level alignment regimes at hybrid organic–organic and inorganic–organic interfaces

Ultraviolet photoelectron spectroscopy has been used to determine the energy level alignment at interfaces of molecular hole-transporting materials and various conductive substrates. Depending on the work function of the substrate, s, a transition between two different energy level alignment regimes has been observed: namely vacuum level alignment and Fermi level pinning. The transition is ass...

متن کامل

Band alignment at organic-inorganic semiconductor interfaces: a-NPD and CuPc on InP„110..

We present a photoemission study of the electronic properties of organic-inorganic semiconductor heterojunctions formed between the two hole transport materials, N,N8-diphenyl-N, N8-bis~1-naphthyl!-1-18biphenyl-4,49diamine ~a-NPD! and copper-phthalocyanine ~CuPc!, and InP~110!. The highest occupied molecular orbital of a-NPD ~CuPc! is found to be 0.2 eV below ~0.2 eV above! the InP valence band...

متن کامل

Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017